
ℹ️ 補足: この記事は Typst Advent Calender 2025 の 23 日目の記事です。

執筆環境

ソフト名 バージョン 補足

Typst 0.14 TYPST_FEATURES=html

Tinymist Typst 0.14.4 —

1. はじめに
Typst、とてもいいですよね。 Markdown のような手軽な書き心地でありながら、
図表や脚注、参考文献まで美しく扱えるため気に入っています。

そんな Typst ですが、バージョン 0.14 で HTML エクスポート機能が大幅に強化さ
れました。 セマンティックな要素のほとんど1が適切な HTML タグに変換されるよ
うになったほか[1]、html.elem を使うことで任意の HTML タグを生成可能になりま
した。 つまり、Typst から HTML の DOM ツリーを直接操作できるようになったの
です。

そこで今回はこの機能を活用して、Typst だけで記述可能なブログシステムを作って
みました。 一般的な SSG（静的サイトジェネレータ）を使わず、記事の執筆からメ
タデータ管理までを Typst 内部で完結させる仕組みです。

なお本システムのスクリプトは WTFPL ライセンスで公開していますが、あくまで
個人利用を目的とした実験的なものです。 その点はご了承ください。

2. ファイル構成
本ブログのファイル構成は以下の通りです（コード 1）。

ルートディレクトリには、システムの中核となる 5 つのファイルを配置しています。
• index.typ: トップページ（https://bibouroku.minimarimo3.jp）の生成元。
• style.css: サイト全体のデザイン定義。
• posts.typ: 全記事のメタデータ（タイトル、公開日、概要など）を集約管理する

データベース的なファイル。
• template.typ: 記事の共通レイアウトやデザインを定義したテンプレート。
• build.py: ビルドスクリプト。posts.typ から情報を読み取り、ディレクトリ走査や

Typst コンパイル、静的ファイルの配置を一括で行います。

ビルドの成果物は public ディレクトリに出力され、この中身がそのまま Web サイ
トとして公開されます。

各記事は個別のディレクトリで管理しており、そこに執筆した index.typ を配置して
posts.typ に登録することで、ビルド対象として認識される仕組みです。 なお、記事

1例えばカスタム HTML 内での footnote など、一部未対応の機能もあります。

https://qiita.com/advent-calendar/2025/typst
https://typst.app/docs/reference/model/
https://typst.app/docs/reference/model/
https://typst.app/docs/reference/model/
https://bibouroku.minimarimo3.jp

ファイル名を index.typ としているのは、ビルド後の index.html（ディレクトリへ
のアクセス時にデフォルトで表示されるファイル）に対応させるためです。

BIBOUROKU.MINIMARIMO3.JP
│ index.typ # トップページ
│ style.css # サイト全体のテーマを設定するファイル
│ posts.typ # 公開対象の記事のメタデータを記述するファイル
│ template.typ # 記事のテンプレート
│ build.py # posts.typのデータをもとにディレクトリを走査し、ビルドと添付ファイル
の移動を行うスクリプト

│
├─public # ビルド後の出力先
│ │ index.html
│ │ style.css
│ │ feed.xml # build.pyによって生成されます
│ │ sitemap.xml # build.pyによって生成されます
│ │
│ ├─Typstでブログを書く
│ │ index.html
│ │ index.pdf
│ │
│ └─テスト
│ index.html
│ index.pdf
│ テスト用画像.png
│
├─Typstでブログを書く # 記事1
│ index.pdf
│ index.typ
│ Typstでブログを書く.yaml
│
├─テスト # 記事2
│ index.pdf
│ index.typ
│ reference.bib
│ テスト用画像.png
│
└─.github
 └─workflows
 deploy.yml

コード 1: 当ブログのファイル構成

3. 実装

3.1. html.html で出力される HTML の構造をカスタマイズ
Typst の HTML エクスポートは通常、文書内容を <body> タグ内に出力します。しか
し、<head> 内に OGP タグや外部 CSS 読み込みを記述したい場合、これでは不十分
です。 そこで template.typ では、html.html 関数を使用して <html> タグから始まる
完全な DOM 構造を定義しました。

html.html(lang: "ja", {
 html.head({
 html.meta(charset: "utf-8")
 html.meta(name: "viewport", content: "width=device-width, initial-
scale=1")
 html.title(title)

 // OGP設定やGoogle Fontsの読み込み
 if description != "" {
 html.meta(name: "description", content: description)
 }
 html.elem("meta", attrs: (property: "og:title", content: title))
 html.link(rel: "preconnect", href: "https://fonts.googleapis.com")
 html.link(rel: "preconnect", href: "https://fonts.gstatic.com",
crossorigin: "anonymous")

 html.script(src: "/script.js")
 html.link(rel: "stylesheet", href: "/style.css")
 })

 html.body({
 html.div(class: "site-container", {
 // ヘッダー、記事本文、サイドバーなどを自由に配置
 html.main(class: "main-content", body)
 html.aside(class: "sidebar", { ... })
 })
 })
})

これにより、Typst だけで SEO 対策やスタイリングに必要な構造を自由自在に作り
込むことができます。

3.2. その他の記事のランダム生成
ブログとしての回遊性を高めるため、記事下部にほかの記事を表示しています。 単
にランダムに選ぶとビルドのたびに内容が変わってしまうため、記事タイトルの
ハッシュ値をシード（種）として使用し、乱数生成器を初期化することで、ランダ
ムでありながら常に同じ結果が得られるように工夫しました。

// template.typより抜粋
import "@preview/suiji:0.5.0": *

// 自分以外かつ作成日が自分より若い記事が対象
let other-posts = post-data.pairs().filter(p => p.last().title !=
title).filter(p => p.last().create < create)

// 記事タイトルを数値化してシードにする
let seed = int(title.clusters().map(str.to-unicode).map(str).join().slice(0,
14))
let rng = gen-rng(seed)

// 記事リストをシャッフル

let (_, indices) = shuffle-f(rng, range(other-posts.len()))

// 上位3件を取得
let picks = indices.slice(0, 3).map(i => other-posts.at(i))

3.3. 記事の情報を Typst で管理する
トップページの記事一覧や RSS フィードを生成するには、全記事のメタデータ（タ
イトルや更新日）が必要です。 今回は posts.typ というファイルをデータベース代
わりに使用するアーキテクチャを採用しました。

#let post-data = (
 "Typstでブログを書く": (
 title: "Typstでブログを書く",
 create: datetime(year: 2025, month: 12, day: 14),
 update: datetime(year: 2025, month: 12, day: 21),
 description: "Typst v0.14の新機能を使って、Typstだけでブログシステムを構築する試
み。",
 tags: ("Typst", "HTML"),
),
 "テスト": (
 title: "テスト",
 create: datetime(year: 2025, month: 12, day: 12),
 update: none,
 description: "サイトの表示テスト",
 tags: ("テスト",),
),
)

#metadata(post-data) <post-list>

Typst ファイル内からは import することで辞書としてデータを扱えます：

#import "../template.typ": project
#import "../posts.typ": post-data
#let meta = post-data.at("Typstでブログを書く")
#show: project.with(..meta)

一方、ビルドスクリプト（Python）からは typst query コマンドを使用することで
同じ情報を JSON で取得できます。

result = subprocess.run(
 ["typst", "query", "posts.typ", "<post-list>"],
 capture_output=True,
 text=True,
 check=True,
 encoding="utf-8"
)
data = json.loads(result.stdout)

data はこんな感じ:

[
 {

 "func": "metadata",
 "value": {
 "Typstでブログを書く": {
 "title": "Typstでブログを書く",
 "create": "datetime(year: 2025, month: 12, day: 14)",
 "update": "datetime(year: 2025, month: 12, day: 21)",
 "description": "Typst v0.14の新機能を使って、Typstだけでブログシステムを構築す
る試み。",
 "tags": [
 "Typst",
 "HTML"
]
 },
 "テスト": {
 "title": "テスト",
 "create": "datetime(year: 2025, month: 12, day: 12)",
 "update": null,
 "description": "サイトの表示テスト",
 "tags": [
 "テスト"
]
 }
 },
 "label": "<post-list>"
 }
]

これにより、Markdown の Frontmatter のようなメタデータ管理を Typst の文法
だけで統一して行えるようになりました。

3.4. 未実装機能への対処
HTML エクスポートは発展途上のため数式や脚注などで工夫が必要な場面がありま
した。

3.4.1. 数式(Math)を SVG 化して埋め込む

現状、数式を HTML に変換することはできないようです。 これについては、
html.frame を使用して数式を一度フレーム（画像扱い）にし、SVG として HTML 内
に埋め込む回避方法が Typst の issue に紹介されていたためこの方法を採用してい
ます。

show math.equation.where(block: false): it => {
 html.elem("span", attrs: (role: "math"), html.frame(it))
}
show math.equation.where(block: true): it => {
 html.elem("figure", attrs: (role: "math"), html.frame(it))
}

https://github.com/typst/typst/issues/721#issuecomment-2817289426
https://github.com/typst/typst/issues/721#issuecomment-2817289426
https://github.com/typst/typst/issues/721#issuecomment-2817289426
https://github.com/typst/typst/issues/721#issuecomment-2817289426
https://github.com/typst/typst/issues/721#issuecomment-2817289426
https://github.com/typst/typst/issues/721#issuecomment-2817289426

3.4.2. カスタム HTML 構造での注釈(Footnote)

html.html で独自の DOM 構造を作ると、標準の footnote がエラーになる制限があ
ります(コード 2)。 これに対しては、Typst の counter 機能を使って自前で脚注シ
ステムを実装することで解決しました。

error: footnotes are not currently supported in combination with a custom
`<html>` or `<body>` element
 ┌─ \\?\G:\マイドライブ\bibouroku.minimarimo3.jp\テスト\index.typ:97:16
 │
97 │ これがノートを付けられる対象1#footnote[footnoteの中身1]
 │ ^^^^^^^^^^^^^^^^^^^^^^^^^
 │
 = hint: you can still use footnotes with a custom footnote show rule

コード 2: 独自の DOM 構造で footnote を使用した際に出るエラー

let note-counter = counter("my-footnote")
show footnote: it => {
 note-counter.step()
 let num = note-counter.get().first()
 // CSSでツールチップ表示するためのHTML構造を出力
 html.span(class: "footnote-wrapper", {
 html.span(class: "footnote-marker", "※" + str(num))
 html.span(class: "footnote-content", it.body)
 })
}

4. まとめ
Typst の HTML 生成機能はまだ実験的な側面もありますが、個人のブログやドキュ
メントサイト構築には十分実用できるレベルに達していると感じました。 何より、
普段のドキュメント作成で慣れ親しんだ Typst 記法がそのまま Web サイトとして出
力される体験は非常に快適です。

皆さんもぜひ、Typst で自分だけの Web サイトを作ってみてください！

参考文献
[1] L. Mädje と M. Haug, 「Typst: Typst 0.14: Now accessible – Typst Blog」,

Typst. 参照: 2025 年 12 月 19 日. [Online]. 入手先: https://typst.app/blog/2025/
typst-0.14#richer-html-export:~:text=Most%20semantic%20elements%20
(those%20from%20the%20Model%20category)%20are%20now%20
properly%20mapped%20to%20semantic%20HTML.%20We%27ve%20also%
20improved%20handling%20of%20textual%20content%20in%20HTML%20
export.

https://typst.app/blog/2025/typst-0.14#richer-html-export:~:text=Most%20semantic%20elements%20(those%20from%20the%20Model%20category)%20are%20now%20properly%20mapped%20to%20semantic%20HTML.%20We%27ve%20also%20improved%20handling%20of%20textual%20content%20in%20HTML%20export.
https://typst.app/blog/2025/typst-0.14#richer-html-export:~:text=Most%20semantic%20elements%20(those%20from%20the%20Model%20category)%20are%20now%20properly%20mapped%20to%20semantic%20HTML.%20We%27ve%20also%20improved%20handling%20of%20textual%20content%20in%20HTML%20export.
https://typst.app/blog/2025/typst-0.14#richer-html-export:~:text=Most%20semantic%20elements%20(those%20from%20the%20Model%20category)%20are%20now%20properly%20mapped%20to%20semantic%20HTML.%20We%27ve%20also%20improved%20handling%20of%20textual%20content%20in%20HTML%20export.
https://typst.app/blog/2025/typst-0.14#richer-html-export:~:text=Most%20semantic%20elements%20(those%20from%20the%20Model%20category)%20are%20now%20properly%20mapped%20to%20semantic%20HTML.%20We%27ve%20also%20improved%20handling%20of%20textual%20content%20in%20HTML%20export.
https://typst.app/blog/2025/typst-0.14#richer-html-export:~:text=Most%20semantic%20elements%20(those%20from%20the%20Model%20category)%20are%20now%20properly%20mapped%20to%20semantic%20HTML.%20We%27ve%20also%20improved%20handling%20of%20textual%20content%20in%20HTML%20export.
https://typst.app/blog/2025/typst-0.14#richer-html-export:~:text=Most%20semantic%20elements%20(those%20from%20the%20Model%20category)%20are%20now%20properly%20mapped%20to%20semantic%20HTML.%20We%27ve%20also%20improved%20handling%20of%20textual%20content%20in%20HTML%20export.

	1. はじめに
	2. ファイル構成
	3. 実装
	3.1. html.htmlで出力されるHTMLの構造をカスタマイズ
	3.2. その他の記事のランダム生成
	3.3. 記事の情報をTypstで管理する
	3.4. 未実装機能への対処
	3.4.1. 数式(Math)をSVG化して埋め込む
	3.4.2. カスタムHTML構造での注釈(Footnote)

	4. まとめ
	参考文献

